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Abstract

Little is known about electric vehicle (EV) demand by low- and middle-income households.

In this paper, we exploit a policy that provides exogenous variation in large EV subsidies tar-

geted at the mass market in California. Using transaction-level data, we estimate three im-

portant policy parameters: the rate of subsidy pass-through, the impact of the subsidy on EV

adoption, and the elasticity of demand for EVs among low- and middle-income households.

Demand for EVs in our sample is price-elastic (-2.1) and buyers capture roughly 73 to 85 per-

cent of the subsidy.
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1 Introduction

Electrification of the vehicle fleet is seen by many policy-makers as central to reducing green-

house gas emissions, local air pollution and dependence on oil. Local, state and national gov-

ernments have set ambitious targets for widespread adoption of electric vehicles (EVs) or phas-

ing out internal combustion engines (ICEs) entirely. National plans to ban ICEs sales include

France and UK (by 2040), Norway (by 2025), India (by 2030), and China. Germany has an-

nounced plans to put 1 million electric vehicles on the road by 2020. In the U.S., California

plans to phase out the sale of new gasoline cars by 2035. To achieve these goals, governments

typically pair these targets with generous subsidy programs. The cost of these programs is

considerable and presents stark tradeoffs for public funds. Through mid-2020, California spent

over $1 billion on the state-wide vehicle subsidies. More recently, the federal government rein-

stated EV subsidies as part of the Inflation Reduction Act of 2022 – the Congressional Budget

Office projects consumer EV subsidies to cost $9 billion over 2022-2031.1

Although a long literature estimates the impact of incentives for hybrid, electric or alternative-

fuel vehicles,2 research on past programs may not provide a good guide as to the impact or fis-

cal costs of meeting these ambitious targets for two reasons. First, past incentives for alternative

vehicles rarely offer the quasi-experimental variation necessary for clean causal identification.

In virtually all cases, the decision to offer an incentive is endogenously determined. States with

populations predisposed to purchase EVs are more likely to offer incentives, confounding esti-

mation of the causal impact of incentives on vehicle adoption. Second, and equally important,

the ambitious targets described above require widespread adoption of electric vehicles.3 Yet,

past incentive programs typically offered a blanket subsidy to all vehicle buyers, and past

adoption correlated strongly with income. As Borenstein and Davis (2016) documents, high-

income households were significantly more likely be early adopters of EVs and claimed the

vast majority of early federal electric vehicle subsidies.4 In recognition of the regressive nature

of early vehicle subsidies, many current programs (including California’s current state-wide

incentives and the new incentives included as part of the Inflation Reduction Act of 2022) are

means-tested and restricted to less-expensive vehicles, to encourage adoption amongst low-

1https://www.cbo.gov/system/files/2022-08/hr5376_IR_Act_8-3-22.pdf
2e.g., Chandra et al. (2010), Gallagher and Muehlegger (2011), Beresteanu and Li (2011), Clinton and Steinberg (2017)

study effects on adoption, Sallee (2011), Gulati et al. (2017) study pass-through and recent papers, including Li et al.
(2017), Li (2017), Springel (2017), study network effects of charging stations.

3Mary Nichols, Chair of the California Air Resource Board, noted in Jan 2018 that that the 2030 market share of EVs
in California would have to be approximately 40% to meet the 5 million by 2030 goal (Los Angeles Times).

4https://energyathaas.wordpress.com/2019/05/13/an-electric-vehicle-in-every-driveway/
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and middle-income households. As such, elasticities derived from early adoption may be less

relevant for assessing the costs or impacts of recent policies that explicitly target widespread

adoption of alternative fuel vehicles. Given the imminence of major policy decisions relating to

these targets, there is an urgent need to better understand demand for EVs in the mass market.

In this paper, we study the impacts of the Enhanced Fleet Modernization Program (“EFMP”),

a California retire-and-replace subsidy program for EV purchases that addresses both of the

challenges above. The design of the EFMP provides clean quasi-experimental variation in the

availability of the subsidy to some buyers and not others, allowing for a transparent treatment-

to-control comparison. Furthermore, subsidy eligibility is means-tested, directing subsidies

specifically towards low- and middle-income buyers, similar to more recent means-tested sub-

sidy programs. This allows the opportunity to estimate the elasticity of demand for EVs for

a sub-population that has not, historically, adopted electric vehicles, but will be an important

market for meeting ambitious policy targets.

We analyze the universe of electric vehicle sales in California, a state that accounts for 40

percent of EV purchases in the United States and 10 percent of purchases worldwide. Using

difference-in-difference, matched diff-in-diff and triple-differenced models that exploit geo-

graphic, temporal and subsidy-exposure variation, we retrieve estimates of three policy-relevant

parameters: the rate of subsidy pass-through for the program, the impact on EV adoption and

the elasticity of demand for EVs among low- to middle-income buyers. Each of these is essen-

tial for understanding the effectiveness of public expenditures on demand-side EV subsidies.

We find that low- and middle-income buyers capture the majority of the subsidy, consistent

with the intentions of program designers. Our estimates indicate a rate of subsidy pass-through

of roughly 75 to 85 percent, and in no specification can we reject full pass-through. In addition,

low- and middle-income buyers are relatively responsive to the subsidies. In our preferred

specifications, the estimated demand elasticity is in a tight range around -2.1, implying that

a subsidy that decreases the buy-price of EVs by 10 percent increases demand by 21 percent

in this customer segment. While this may seem like a considerable effect, the small baseline

quantity implies that even elastic demand translates into a modest number of additional EVs.

While we are encouraged to offer an estimate of the EV demand elasticity in California that

is retrieved using quasi-experimental variation, context is required for those who wish to ex-

trapolate these results. The suitability of these estimates for general use as demand elasticities

may differ by setting. Subsidy eligibility under the EFMP is linked to having a car to scrap, and

is also driven by targeted marketing efforts by program administrators, particularly in one of
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the pilot regions. Moreover, the program does not exist in isolation, which is a feature common

to all EV elasticity estimates in the literature to date. The presence of large federal and state

subsidies for new EVs affects the interpretation of results since many of the new EVs purchased

under a given subsidy program (in our case EFMP) were eligible for other state-wide or federal

EV subsidies as well. Moreover, the ZEV Mandate – a policy requiring manufacturers to sell

a certain proportion of EVs in California and nine other participating states – implicitly sub-

sidizes manufacturers who sell EVs. While our empirical design nets out effects of statewide

and federal demand-side subsidies as well as supply-side programs, the extent to which our

elasticity estimates (which reflect marginal subsidy changes) apply to ranges of prices on the

inframargin is an open question.

Notwithstanding these caveats, this paper makes several new contributions to the state of

knowledge about the market for EVs. First, we provide (to our knowledge) the first estimates

of the EV demand elasticity that are supported by a treatment-versus-control empirical design

that allows key identifying assumptions to be tested directly. Second, ours is (again, to our

knowledge) the first paper to examine EV adoption amongst low- and middle-income house-

holds that form the bulk of the market and will be central to meeting ambitious EV targets. In

many states, levels of adoption are just not reaching levels experienced in California during

our study period. Although the market for California has continued to grow since the study

period, our results might be particularly relevant to adoption outside of California. Third, our

estimates of subsidy pass-through contribute to the literature on the incidence of vehicle incen-

tives. Our results contribute to an important contemporary policy debate that is likely to be

repeated in jurisdictions across the globe in coming years.

2 Institutional Details and Data

The Enhanced Fleet Modernization Program is a vehicle incentive program in California that

provides subsidies to low- and middle-income households to scrap old vehicles for newer (al-

though in some cases, still used), cleaner and more fuel efficient vehicles. EFMP is distinct

from the Clean Vehicle Rebate Project (“CVRP”), the main consumer-facing alternative vehicle

incentive program in California that is available state-wide and, until recently, was available to

all private buyers of qualified vehicles.

The EFMP was initially designed as a retire-and-replace program along the lines of Cash-

For-Clunkers.5 In April 2015, the California Air Resources Board (“ARB”) redesigned the pro-

5See Mian and Sufi (2012), Li et al. (2013) for analyses examining the effects of the federal Cash-for-Clunkers pro-
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gram to combine features of a retire-and-replace program with an incentive program for the

purchase of high fuel economy vehicles and EVs, targeting low- and middle-income consumers

in disadvantaged communities (“DACs”). 6 The redesigned program, the focus of this paper,

was launched as a pilot in July 2015 in two Air Quality Management Districts (“AQMDs”): the

San Joaquin Valley Air Pollution Control District and the South Coast Air Quality Management

District.7 Over the first two years, the pilot program received $72 million in state funding with

the expectation to expand the program to other metro areas.8

2.1 Subsidy eligibility and generosity

The EFMP pilot program is restricted to participants residing in the two AQMDs and retiring

a qualifying vehicle.9 The program offers two separate subsidies: a base subsidy and a sup-

plementary “plus-up” subsidy.10 The base subsidy is available to all low- and middle-income

households at or below 400% of the federal poverty line (“FPL”) households within the pi-

lot AQMDs. Subsidy generosity is progressive, such that households with lower incomes are

eligible for more generous incentives. Households below 225% of the FPL are eligible for the

most generous base subsidy of $4,500. Households with higher incomes, in the ranges between

225% to 300% and 300% to 400% of the FPL are eligible for base subsidies of $3,500 and $2,500,

respectively.

The “plus-up” subsidy is also means-tested. But, the “plus-up” subsidy is targeted specifi-

cally at households that reside within a disadvantaged community (“DAC”) as determined by

the California Environmental Protection Agency (“CalEPA”). At the census-tract-level, CalEPA

calculates a CalEnviroScreen (“CES”) score that aggregates traditional measures of socio-economic

disadvantage (e.g., poverty and unemployment), measures of pollution exposure (e.g., ambi-

ent air pollution levels and the presence of clean-up and solid waste sites) and sensitivity to

pollution (e.g., child and elderly share of the population).11 CalEPA classifies all census tracts

gram.
6https://www.arb.ca.gov/msprog/aqip/efmp/finalregulationorder2014.pdf
7The San Joaquin Valley Air Pollution Control District covers much of California’s Central Valley, from Bakersfield

in the South to the southern suburbs of Sacramento in the north. The South Coast Air Quality Management District
covers Los Angeles, Orange County, Riverside and San Bernardino counties, including roughly half of California’s
population.

8ARB is in negotiation with three new AQMDs (Bay Area AQMD, Sac Metro AQMD, San Diego AQMD) to expand
the program.(see. e.g., https://www.arb.ca.gov/board/books/2017/062217/17-6-1pres.pdf). If expanded, ninety per-
cent of “disadvantaged communities” (described further below) in California will be covered by the EFMP.

9Vehicles must be: (1) a light-duty vehicle, (2) registered and insured for the two previous years, (3) with relatively
high emissions, defined by the AQMD.

10Appendix figure A1 illustrates a flowchart for eligiblity.
11Appendix figure A2 summarizes the components of the CES score.
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in the top quartile of the state-wide CES distribution as disadvantaged. To be eligible for the

EFMP “plus-up” subsidy, a household must reside in a “disadvantaged zip code”, a zip code

that (wholly or partially) contains a disadvantaged census tract. We adopt the terminology of the

EFMP program and refer to these “disadvantaged zip codes” as disadvantaged communities

(“DACs”).

Following the program rules, we overlay census tracts and zip codes and classify a zip code

as disadvantaged if it contains part or all of a disadvantaged census tract.12 Figure 1 maps

zip code boundaries for the Southern two-thirds of California. Regions in grey are the San

Joaquin Valley and South Coast AQMDs, the two AQMDs that participated in the EFMP pilot

program during our study period. The zip codes in pink are those that contain a disadvantaged

census tracts. Thus, means-tested households in zip codes that are in grey are eligible for the

base subsidy, and those in both grey and pink are eligible for the plus-up subsidy. All other

households are ineligible.

Figure 2 plots the histogram of the maximum CES score within a zip code for participating

AQMDs (right panel) and non-participating AQMDs (left panel). The vertical red line in each

plot marks the 75th percentile of state-wide CES score Zip codes to the right of the red line

would be classified as disadvantaged communities by the rules of the program.

As with the base subsidy, the plus-up program is means-tested with lower income house-

holds eligible for more generous plus-up incentives. Households below the 225% of the FPL

are eligible for the most generous plus-up subsidy: $5,000. As household income rises, subsidy

generosity declines until a household’s income exceeds the 400% of FPL eligiblity threshold.

The plus-up subsidy is supplemental to the base subsidy. A household with income below

225% of the FPL residing within a disadvantaged community would be eligible for a total sub-

sidy of $9,500. Table 1 lists the income thresholds and subsidy amounts for both the base and

plus-up subsidy.

Roughly half of the population of California resides in the participating AQMDs, of which

roughly 80 percent of the population live in zip codes classified as disadvantaged for purposes

of the AQMD pilot program. Outside of the pilot regions, a higher fraction of the population

lives in non-disadvantaged zip codes, reflective of higher incomes and the fact that the South

Coast AQMD and the San Joaquin Valley are locations with relatively poor air quality.

12The DAC designations are publicly available at the census-tract-level. https://oehha.ca.gov/calenviroscreen/
report/calenviroscreen-version-20
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2.2 Additional EFMP implementation details

The ARB sets general guidelines for the pilot program which administrators must follow. The

AQMDs are responsible for administering the program and determining household eligibility.

In addition, the AQMDs must build a network of participating dealerships that agree to a

set of consumer protections, including “no-haggle” posted prices, limitations on dealership

financing, required information-provision and inspections for used vehicles.

However, the ARB granted each district latitude with respect to implementation, and specif-

ically, marketing, outreach and the application process. In the South Coast AQMD, informa-

tion about the program is relayed through marketing and participants apply online. After the

AQMD assignment determines that an applicant is eligible, the program directs the applicant

to contact the list of pre-approved dealerships. In San Joaquin Valley, the program is admin-

istered through regular “Tune-in and Tune-up” events on weekends and other direct outreach

events throughout the San Joaquin Valley, specifically targeting minority groups. Eligible buy-

ers are then guided through the application process and, if eligible, are directed towards the

websites of participating dealerships.

2.3 Rebate and transaction data

In addition to the list of the disadvantaged zip codes, our empirical analysis combines two

datasets: (1) program rebate data and (2) transaction-level data on the universe of new and

used EVs purchased by California buyers. The EFMP rebate data are publicly available at

the transaction-level. For each transaction the data report value of the subsidy, the vehicle

purchased and the zip code in which the recipient of the subsidy lives. Our vehicle transaction

data was purchased from a major market research firm. For the universe of battery electric

vehicles (“BEVs”) and plug-in hybrid vehicles (“PHEVs”) purchased by buyers in California,

we observe the make, model and model-year of the vehicle, the transaction price as reported

to the Department of Motor Vehicles, the zip code of the buyer and the dealership that sold the

vehicle.

We summarize transaction counts, prices and subsidies in table 2, grouping zip codes by

whether they are in or out of the participating pilot regions and whether they are classified

as a disadvantaged zip code. Buyers in disadvantaged zip codes purchase less expensive and

fewer EVs on a per capita basis, before and after the start of the EFMP pilot. Yet, foreshadow-

ing our empirical results, per capita EV sales rise most quickly in disadvantaged zip codes in

the participating AQMDs. Overall, EFMP transactions are a small fraction of total EV sales. In
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disadvantaged communities during the pilot program, roughly two percent of the transactions

received an EFMP subsidy. A smaller fraction of purchases outside of disadvantaged com-

munities received EFMP subsidies, reflective of higher incomes lower eligibility for the base

subsidy and ineligibility for the plus-up subsidy.

Consistent with the construction of the disadvantaged community identifier, sociodemo-

graphics are different in these communities relative to non-disadvantaged communities. In the

first three columns of Table 3, we present population-weighted average demographics for all

of California (column 1), disadvantaged communities outside the pilot regions (column 2) and

disadvantaged communities outside the pilot regions (column 3). Relative to all of California,

households in disadvantaged communities tend to have households incomes that average ten

to fifteen thousand dollars lower than the mean household in California, are less likely to have

graduated from high school, are more likely to be Hispanic or African American and are more

likely to be unemployed. In contrast, column 4 presents average demographics weighting by

EV sales over 2014 - 2018. Consistent with the evidence from Borenstein and Davis (2016), the

sociodemographics of zip codes of early adopters of EVs suggest these zip codes are a particu-

larly advantaged subset of California, with mean incomes roughly thirty-five thousand dollars

higher than the average California household, higher educational attainment and lower rates

of unemployment.

3 Pass-Through of the EFMP Subsidy

The features of EFMP program lend themselves to a difference-in-differences specification com-

paring disadvantaged zip codes in and out of the two participating AQMDs, before and after

the start of the pilot program.13 We can extend this to include an additional difference, by in-

cluding the non-disadvantaged communities in and out of the participating AQMDs. Using

this framework, we estimate three policy parameters of interest: (1) the incidence of the EFMP

subsidies and (2) impact of the EFMP incentives on electric vehicle adoption, and (3) the elas-

ticity of demand for alternative fuel vehicles, specifically amongst low- and middle-income

customers targeted by the EFMP.

We aggregate our transaction-level data to the zip-quarter, the finest level of temporal and

spatial disaggregation for which we have subsidy data, and the geographic level of treatment

13While the discontinuous nature of disadvantaged community assignment might suggest a regression discontinuity
design is appropriate, the means-testing of the program causes most of the relevant variation to occur well away from
the discontinuity. This can be seen in Appendix Figure A4.
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assignment.14 We consider a zip code as treated if the zip code is located in the South Coast or

San Joaquin Valley Air Quality Management Districts (“AQMD=1”), contains at least part of

one DAC census tract (“DAC=1”) and the calendar date is in the third quarter of 2015 or later

(“Post=1”). Likewise, for purposes of our analysis, we aggregate the subsidy data to a similar

level of aggregation. Although observations in the raw subsidy data are at the individual

vehicle level, the subsidy data only include the make, model-year and location of the owner.

The subsidy data does not report the VIN, odometer reading or other information that would

allow us to match the subsidy and transaction data at the transaction-level.

3.1 Estimating the pass-through of EFMP subsidies

Our first parameter of interest is the pass-through of the EFMP incentives to buyers. Cost

efficacy of the program is determined in part by the extent to which the subsidy affects the price

paid by the consumer, rather than accruing to dealerships or manufacturers. If we were able

to match the transaction data and the subsidy data at the level of each transaction, estimating

pass-through would be straightforward. For EFMP-eligible buyer i, purchasing vehicle j at

time t, the subsidy-inclusive price paid is given by:

Pijt = Pjt + ∆P− S (1)

where Pjt is the price paid by a buyer of the same vehicle j at the same time t who does not

receive the subsidy, ∆P is the amount by which the subsidy-exclusive price changes in response

to the subsidy, and S is the amount of the subsidy. Pass-through of the subsidy is the fraction

of the subsidy reflected in the subsidy-inclusive price paid by the buyer, (∆P− S)/S.

As discussed above, we aggregate our data to the zip-quarter level, as that is the finest

level of aggregation at which the subsidy data can be linked with the transaction data. It is

also the geographic level of assignment to treatment. The aggregation requires us to adapt the

transaction-level exercise above to reflect two features of our setting. First, only a fraction of

the EVs purchased in a particular zip-quarter receive a subsidy. Second, the EFMP subsidies

are offered to buyers of both new and used EVs and the mix of vehicles purchased differs by

zip.15

14The data on EFMP reports the quarter of purchase and the owner’s zip code, but does not provide the Vehicle
Identification Number (“VIN”) of the purchased vehicle. Thus, we cannot match information on EFMP subsidies to
exact transactions in the purchase data. Rather, we observe the mean EFMP subsidy received by EVs purchased by
households at the zip-quarter level.

15Although the EFMP data does not report the vehicle VIN, the public data does record the model year of the pur-
chased vehicle. Roughly 80 percent of vehicles have models years more than one year less than the calendar year in
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Formally, the average subsidy-exclusive price (i.e., the price received by the dealership) in

a zip z in quarter t, is given by:

P̄zt = ∑
i∈z

(Pijt + ∆P)/Nzt = ∑
i∈z

Pjt/Nzt + λzt∆P (2)

where Nzt is the total number of transactions, and λzt is the fraction of vehicles subsidized in

zip z at time t. Intuitively, the average subsidy-exclusive price in a zip-quarter is a function of

the fraction of the subsidy captured by dealers (∆P), the fraction of vehicles which received a

subsidy (λzt) and the mix of vehicles sold in zip z at time t.

This formulation makes two (modest) assumptions. First, this assumes that the impact of

the subsidy on the subsidy-exclusive price ∆P is constant across vehicles j and time periods t.

Second, this assumes that the subsidy program is sufficiently small so as to leave the price of

the unsubsidized vehicles, Pjt, unaffected. In our setting, this is plausible as the pilot program

is small relative to the overall market for vehicles in California, although our setting allows this

assumption to be tested, which we do in section 4.3.

To derive the analogue to our estimating equation for pass-through from equation (2), we

net out the average price of the portfolio of vehicle purchases in zip z and time t16 and the

average per-vehicle subsidy (λztS) from both sides to obtain:

P̄zt −∑
i∈z

Pjt/Nzt − λztS︸ ︷︷ ︸
Residual subsidy-inclusive price

= λztS
(∆P− S)

S
(4)

The left hand side of the expression captures whether buyers on average in zip code z paid

more or less, net of subsidies, than buyers that purchased a the same mix of vehicles else-

where in California.17 The right hand side of the expression is the product of the average

which they are purchased, suggestive that they are used, rather than new vehicles. In contrast, 87 percent of all EVs in
the transaction data would be classified as used by this definition.

16In our empirical setting, we observe the model*model-year of the vehicle as well as the odometer reading and
whether the vehicle was purchased through a lease. We predict vehicle prices as a function of model*model-year*year-
of-purchase fixed effects, odometer reading in miles and a dummy variable reflecting whether or not the vehicles
was leased. Formally, denoting transaction, zip, model, model year and year-quarter of purchase as i, z, m, y and t
respectively, we regress:

Pizmyt = αmyt + β1Odometeri + β2Leasei + ξi (3)

where Pizmyt is the transaction price of the vehicle i received by the seller, and αmyt captures the average price of a
particular make and model-year in a particular quarter and year (e.g., 2015 Nissan Leaf purchased in the first quarter
of 2017).

17Conditioning on the mix of vehicles is important and follows a similar logic as in Gulati et al. (2017). A change
in the unresidualized subsidy-inclusive price can be driven by two factors: (1) the pass-through of the subsidy, and
(2) any compositional change in the vehicles purchased as a result of the subsidy. Failing to account for compositional
differences can lead to pass-through estimates that mis-represent the split of the subsidy captured by buyers and sellers,
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subsidy across all vehicles purchased in zip z and time t, (λztS), and the pass-through rate of

the subsidy onto the buyer, (∆P−S)
S . Ultimately, our empirical strategy will regress the “residual

subsidy-inclusive price” (i.e., the left hand side of 4), on the average subsidy across all vehicles

purchased in zip z and time t, (λztS). The estimated coefficient is the subsidy pass-through rate
(∆P−S)

S .18

3.2 Estimation and identification

The features the EFMP pilot program naturally support a difference-in-differences (or triple-

differenced) estimation strategy, since we observe data on prices and sales, in and out of the

pilot regions, in disadvantaged and non-disadvantaged communities, before and after the start

of the pilot program. The difference-in-differences strategy estimates the pass-through of the

subsidy by estimating the analog to equation (4), comparing the prices in disadvantaged zip

codes, in and out of the pilot regions, before and after the start of the pilot program. Using the

residual subsidy-inclusive price (i.e., the left hand side of equation 4) as the dependent variable,

we estimate two regression models that capture slightly different measures of pass-through.

First, we regress our dependent variable on the fraction of sales that received an EFMP

subsidy in a zip-quarter, λzt, and a set of fixed effects to capture time-invariant and zip-code

invariant unobservables:

Yzt = β1λzt + νt + γz + εzt (5)

where Yzt is the residual subsidy-inclusive price from (4), νt and γz are time fixed effects and

zip fixed effects. The time fixed effects and zip fixed effects nest the traditional post-period

dummy and treatment-region dummy, but allow us to control for unobserved correlation be-

tween prices and the take-up of the program at the zip-level. The disadvantaged communities

in the pilot region vary substantially by income (e.g., a wealthy zip code might be classified

as disadvantaged due to proximity to a pollution point source). Since the EFMP program is

means-tested, take-up is not even amongst disadvantaged zip codes with the pilot region. The

zip fixed effects control for unobserved drivers of EV purchase prices correlated with zip-level

treatment eligibility.

From equation (4), the coefficient β1 provides an estimate of (∆P− S). This captures how

as in Gulati et al. (2017) where subsidized buyers are more likely to purchase vehicle with “add-ons.”
18Regressing the subsidy-inclusive price on the subsidy is analogous to the standard tax pass-through model from

the public finance literature. Regressing the tax-inclusive retail price on the tax rate yields an estimate of the fraction of
the tax passed onto consumers. An alternative approach would omit the last term on the left-hand side of equation (4),
in which case the coefficient of interest would be interpreted as the fraction of the subsidy captured by dealers.
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much less on average, buyers of vehicles who received the EFMP subsidy paid relative to

buyers of the same model and vintage who did not receive the EFMP subsidy.19

We also estimate the pass-through rate directly, by regressing the residual subsidy-inclusive

price on the average subsidy received across all purchases in a zip z and time t, Szt, analogous

to λztS from equation (4).

Yzt = β1Szt + νt + γz + εzt. (7)

Here, the coefficient β1 provides an estimate of (∆P− S)/S, the pass-through rate of the sub-

sidy.

The identifying assumption necessary for interpreting the coefficient, β1, in equation (5) as

an unbiased estimate of the pass-through rate of the subsidy is that the error term, εzt, and the

fraction of purchases subsidized, λzt, are not jointly determined. There are several concerns

that might arise. First, if policy is set endogenously to target locations with high demand for

electric vehicles, εzt and λzt might be positively correlated. Yet, the nature of the pilot program

suggests that endogenous targeting is unlikely. The roll-out of the pilot program was plausibly

exogenous to zip-level demand. Relative to state-wide incentives, the pilot programs were

limited in size and scope. The program in South Coast operated largely through its online

presence, with a relatively modest amount of targeted marketing, with interested consumers

applying on-line. The program in San Joaquin directly marketed to low-income and minority

households as part of local “Tune-in, Tune-up” smog testing events. Notably, the “Tune-in,

Tune-up” events are pre-announced, rotate between regional population centers in the San

Joaquin Valley, and are primarily opportunities for drivers to receive free smog checks. At these

events, eligible drivers would also receive information about the EFMP subsidies, if applicable,

but the subsidy program itself was not the primary goal of the “Tune in, Tune up” events.20

19Although we do not do so in the paper, we could alternatively use a “treatment dummy” in lieu of the fraction
of vehicles purchased under the EFMP program in a zip-quarter as the explanatory variable of interest. In this case,
since take-up is incomplete, the coefficient on the “treatment dummy” is an estimate of the intent-to-treat effect on the
average price paid across both eligible and ineligible transactions. Specifically,

Yzt = β1A1P + νt + γz + εzt (6)

where Yzt is the residual subsidy-inclusive price, 1A and 1P are indicators for AQMD=1 and Post=1, respectively. Zip
code and time fixed effects are conditioned out via γz and νt, respectively. Here, the coefficient β̂ reflects an estimate
of the intent-to-treat for buyers in disadvantage zip codes in the pilot region. Intuitively, using λzt as a continuous
treatment in place of the treatment dummy in (6) scales up the intent-to-treat estimate β to an estimate of the treatment-
on-the-treated, the effect that the subsidy has on the residual subsidy-inclusive price of the vehicles that received the
EFMP subsidy.

20Since the end of the study period, program officials in the San Joaquin Valley have begun to take online appli-
cations. Interested individuals bring their current vehicle to an event, receive a free smog check and, if eligible for
the program, receive in-person guidance on how to apply. At the same time, program officials verify applicant eligi-
bility and guide the potential participant through the application process. After the event, officials followed-up with
potential applicants to help them complete their application.
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Second, if the scope of the program is sufficiently large, the program itself might impact

the equilibrium price if demand increases. Here, we appeal to the fact that the pilot program

was small in scale and equilibrium prices for vehicles are determined based on aggregated

demand and supply over are larger region. Even in the disadvantaged communities in the

pilot regions, subsidized vehicles are a relatively small fraction of overall electric vehicle sales,

and as a result, unlikely to impact equibrium prices.21

Finally, we find little evidence that prices are trending differentially in the pilot and non-

pilot AQMDs. Figure 3 plots trends in the residual subsidy-inclusive purchase price of electric

vehicles (left panel) and the log of EV sales (right panel) in disadvantaged zip codes in and

out of the pilot regions over time. In each graph, the red lines and shading corresponds to

the means and standard errors for disadvantaged communities in the participating AQMDs;

the blue lines and shading plot the analogous values for disadvantaged communities in non-

participating AQMDs. In both cases, the pre-trends are statistically indistinguishable. The

slight difference in the pre-trends for residual purchase prices as modest in comparison to the

value of the EFMP incentives.

3.3 Matched and triple-differenced specifications

Our setting allows for two additional specifications to further address potential concerns with

pre-period trends (despite the fact that the pre-trends for residual prices and log-quantities

are similar) and omitted variables correlated with the treatment. Although the classification

for disadvantaged communities applies identically to both the pilot and non-pilot regions, the

histograms of CES scores plotted in Figure 2 indicate that the upper tail of CES scores in partic-

ipating AQMDs does not overlap with the non-participating AQMD distribution. The highest

CES score outside of the participating AQMDs (South Coast and San Joaquin) is 59.9, corre-

sponding to the 75th percentile of CES scores in the participating AQMDs.

As a refinement to the difference-in-difference specification above, we use nearest-neighbor

matching to pair disadvantaged zip codes in participating AQMDs with “control” disadvan-

taged zip codes in non-participating AQMDs. We match based on the pre-period trends in av-

erage prices or quantities, following the synthetic control literature (e.g. Abadie and Gardeaz-

abal (2003), Abadie et al. (2010)).22

21Although we focus on the OLS results when estimating pass-through, we also instrument for the fraction of vehicles
subsidized by EFMP using the instrument for the quantity regressions describe in section 4.1. The IV results, presented
in the appendix are qualitatively similar to the OLS results, suggesting the subsidies are passed-through to consumer
prices to a high degree.

22We plot the mean residual purchase price and the mean of log of EV sales (right panel) in the matched sample in
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We also examine a triple-differenced specification that leverages the non-disadvantaged

communities in both the pilot and non-pilot regions, and includes a full-set of interaction fixed

effects, νtA, φtD and γz, capturing shocks common to the pilot region, shocks common to dis-

advantaged communities and time-invariant zip-level differences. Relative to the unmatched

and matched difference-in-difference specifications above, the triple-differenced specification

controls for unobservable shocks to EV adoption or prices common to all zip codes within the

pilot region. Formally,

Yzt = β1λzt + θtA + ηtD + γz + εzt (8)

where θtA and ηtD are AQMD and DAC-specific time-fixed and γz are zip-level fixed effects.

As with the difference-in-differences specification, the triple-differenced specification includes

a set of fixed effect that nest the standard triple-differenced interactions between a post-period,

AQMD, and DAC dummy variables. The finer fixed effects allow us to control for unobserved

correlation between prices and the take-up of the program at the zip-level and unobserved

correlation between prices in the pilot regions and the gradual roll-out of the EFMP subsidy.

3.4 Pass-through results

Table 4 presents the pass-through estimates. The first three columns present the difference-

in-difference, the matched difference-in-differences and the triple-differenced specifications

respectively, using the fraction of subsidized vehicles (λzt) as the explanatory variable of in-

terest. In this specification, we interpret the coefficient on the fraction of subsidized vehicles as

an estimate of the different between the subsidy-inclusive price paid by EFMP recipients rel-

ative to non-participating buyers of the same vehicle. We find evidence that consumers likely

capture the majority of the subsidy, although confidence intervals include smaller rates of pass-

through. Relative to an average base and plus-up subsidy close to $9,000, our results suggest

that buyers pay $7,000 to $8,000 less for a vehicle, net of the subsidy, relative to non-participants

purchasing the same make, model and model-year elsewhere in California.23

Columns (4) through (6) again present the difference-in-difference, the matched difference-

in-differences and the triple-differenced specifications, but now use the average subsidy in zip

z at time t (i.e., Szt from equation (4)) as the explanatory variable of interest. Here, the coeffi-

cient can be interpreted as a direct estimate of the pass-through of the subsidy to the subsidy-

inclusive price. Again, the estimates suggest that buyers capture between 73 - 84 percent of the

A5.
23After instrumenting, our estimates of the proportion of the subsidy captured by consumers increases slightly, and

one cannot reject full pass-through.
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subsidy depending on the specification. These estimates are consistent with stated efforts of

the program designers who sought to channel most of the subsidy dollars to buyers rather than

sellers or upstream market participants. In addition, these pass-through estimates are similar to

estimates from previous work examining the pass-through of hybrid vehicles subsidies. Gulati

et al. (2017) finds that new hybrid vehicle buyers capture 80 to 90 percent of the value of incen-

tives.24 But, unlike earlier subsidy programs that were widely available, the EFMP program

pilot was limited in scope. Although we find evidence that consumers captured the majority

of the benefits of the pilot program, the pass-through of a widely implemented program might

differ.

4 Impact of EFMP Subsidies on Sales

In this section we describe our method for retrieving the treatment effect of EFMP subsidies

on the quantity of EVs demanded in treated zips (the treatment effect on treated subjects, or

“ToT”). The central challenge can be seen by considering a basic difference-in-differences es-

timate, β̂ = (Q11 − Q10) − (Q01 − Q00), where in our context a in Qap equals 1 in treated

AQMDs and 0 otherwise, and p equals 1 in the “post” period and 0 in the “pre” period. The

intent-to-treat (“ITT”) estimate is retrieved under the “parallel trends” assumption, allowing

β̂ = (Q11|T = 1)− (Q11|T = 0). When only a subset of individuals are candidates for treat-

ment, as is the case in our setting, the treatment effect on treated units (“ToT”) is retrieved by

scaling the ITT estimate by the fraction of treatment-eligible (TE) households in the population:

NTE

N .

In our setting, NTE

N is unobservable. Households within treated zips are eligible to receive

the EFMP subsidy only if they pass a means test and have a car available to be scrapped. We

proceed by estimating the effect of the EFMP subsidy program on quantity of EVs purchased

by using high and low scaling factors which, together, bound NTE

N . Before describing these

scaling factors in detail, it is helpful to keep in mind the estimating equation. Equation 9 is the

quantity analog of equation 5 above.

Yzt = β1Tω
zt + νt + γz + εzt (9)

24Gulati et al. (2017) further finds that subsidy-eligible buyers are more likely to choose vehicle options that increase
the purchase price of the vehicle, and thus pay a higher purchase price, unadjusted for options. In our case, we do not
observe the options purchased by customers. However, EFMP buyers are substantially more likely to purchase used
EVs, where the set of potential options is more limited. Moreover, unobserved options would tend to bias our estimates
towards zero, suggesting, if anything our results understate the fraction of the subsidy captured by consumers.
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The dependent variable, Yzt, is the inverse hyperbolic sine of EV quantity in zip z at time t. Tω
zt ,

the treatment variable, is a weighted average subsidy amount per EV sold under EFMP, which

will be based on the high and low scaling factors (ω ∈ {high, low}) which we will describe

next. Estimates of β1 are “lower” and “upper” bounds of the treatment effect, respectively.

(Note that the higher the scaling factor, the less it will scale up the ITT estimator to retrieve the

ToT.) Controls are νt and γz: time fixed effects and zip fixed effects.

The average subsidy amount per EV purchased under EFMP is:

Tω
zt = αω

zt ∗ Szt (10)

where Szt is the sum of EFMP subsidies applied to EV purchases in zip z in quarter t, and αω
z

is the high or low scaling factor used to calculate the mean subsidy amount. The high scaling

factor (αhigh
zt ) is the fraction of households under 400 percent of the poverty line. This is time-invariant,

reflecting Census data we use to obtain the fraction of households in each of the three subsidy-

eligible income bands. As such, α
high
zt = α

high
z . Note that αhigh overestimates true treatment

eligibility (αhigh
z > NTE

N ) because only a subset of these households have scrap-eligible cars.

To place bounds on our estimates, we introduce the “low” scaling factor: αlow
zt is the fraction

of EV buyers in each zip-quarter that purchase EVs under the EFMP program.

αlow
zt =

qEFMP
zt
qEV

zt
(11)

This factor underestimates the true treatment eligibility (αlow
zt < NTE

N ) so long as Pr(EVt|eligible) <

Pr(EVt), which is empirically true. Low-income (treatment-eligible) households purchase EVs

at a lower rate than the population average.

Together, these high and low scaling factors yield two treatment variables that allow us to

assess the lower and upper bounds on the effect of subsidies on EV purchases:

Thigh
zt = α

high
z ∗ Szt (12)

and

Tlow
zt = αlow

zt ∗ Szt (13)
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4.1 Identification and results

There is an identification challenge when using the lower-bound scaling factor, αlow
zt , since

quantity of EVs transacted now appears on both the left- and right-hand sides of the regression.

To address this endogeneity, we turn to an instrumental variables approach. We instrument for

Tlow
zt , the average EFMP subsidy amount, using the zip-level average eligible subsidy based on

the representation in population in each of the relevant eligibility bands. Specifically,

Wz = ∑
l

αz,r ∗ Sr (14)

where r ∈ {225, 300, 400} denotes the three ranges of household income (as a percent of the

federal poverty line) that relate to different subsidy levels. To account for potential nonlin-

earities in the relationship between eligibility and take-up, we use both Wz and (Wz)2 in our

main IV specifications. The exclusion assumption is that, conditional on zip and quarter-of-

sample fixed effects, there is no correlation between pre-period and post-period EV demand.

By construction, the denominator of the instrument is constant for each zip code and hence,

uncorrelated with idiosyncratic shocks to log quantities in the post-treatment period.

We attempt to falsify the main assumption by running a two stage test. The intuition for

the test stems from the need for the instrument to be uncorrelated with Qzt after conditioning

out zip and quarter-of-sample fixed effects. Recall that instrument is comprised of zip-level EV

demand in the pre-treatment period, interacted with average EFMP subsidy levels that are a

function of population demographics and EFMP program design. In stage one of the test, we

regress the instrument on zip-level pre-period quantity, αz,225 ∗ 5000, αz,400 ∗ 4000, αz,300 ∗ 3000

and time fixed-effects. Stage two regresses the fitted residual from stage 1 on demeaned Yzt. A

high R2 in the second stage reflects a high level of correlation between the IV and Qzt, which

leads to a rejection of the identifying assumption. We find an R2 of 0.000036.

Additionally, we wish to reject the possibility that our exclusion assumption is contam-

inated by zip-level autocorrelation in unobservable determinants of EV demand. This con-

cern arises from the presence of autocorrelation in zip-level EV demand which, empirically,

attenuates substantially after two quarters. We thus construct the alternative version of the

instrument excluding the two quarters preceding treatment when calculating pre-period EV

demand. Results from this robustness check are nearly identical to those using the preferred

IV. This should not be surprising given the evidence presented in the preceding paragraph.

Table 5 shows the effect of the EFMP subsidies on the quantity of EVs transacted. As with

17



the price regressions, we present OLS estimates in columns 1 through 3, for the difference-in-

differences, matched difference-in-differences and triple differenced specifications respectively,

and IV results in columns 4 through 6. To reiterate, we regress the inverse hyperbolic sine of

quantity on Th
zt and interpret the estimated coefficient as the percentage change in EV sales

resulting from EFMP program exposure moving from zero to 100 percent eligibility. Columns

1 and 2 suggest that zip codes in which all buyers were eligible for the program would ex-

perience mean lower-bound increases of between 1.6 to 2.8 percent in the quantity of new

EVs purchased relative to zip codes with zero program eligibility. The triple-differenced es-

timator in column three is slightly lower (1.1 percent) but indistinguishable from zero. The

upper-bound estimates in columns 4-6 show larger responses to the subsidies – between 12

to 15 percent treatment effects per $1,000 subsidy. The consistency within these upper-bound

estimates reflects the robustness of identifying assumptions. As reported in the table, the in-

struments are sufficiently strong. First-stage f-statistics and the Sargan-Hansen p-values reflect

strong first-stage power.25

To place these results in broader context, recall that table 2 reports that just over 1,300 EVs

were purchased under the EFMP program in our sample. Despite the large magnitude of

subsidies (up to a combined base and plus up subsidy of $9,500 in subsidies on an average

EV transaction price of roughly $26,000) only 2 percent of EVs purchased in qualifying zip

codes are purchased through the program. The relatively low level of uptake is likely due to a

combination of factors. These may include low intrinsic demand for EVs among the subsidy-

eligible population, less than full pass-through of the subsidy to buyers, the fact that EVs tend

to be substantially more expensive than alternatives during the sample period, the potential

concentration of subsidy-eligible buyers in multi-unit dwellings without access to overnight

charging infrastructure, and the requirement that eligibility is conditional on having a suitable

“clunker” to trade in at the time of EV purchase. However, table 5 shows that the relative

change in EV demand stimulated by the presence of the subsidy is proportionately high.

4.2 Elasticity of demand for electric vehicles

The elasticity of demand for EVs in this setting is of particular interest, as estimates on the

broader population of early adopters primarily reflects the price sensitivity of high-income

households. In contrast, the EFMP program specifically targets low and middle-income house-

holds that form the bulk of the population and potentially play an important role in wide-scale

25Point estimates obtained using only the linear IV, Wz, are nearly identical, with first-stage F-statistics in the 18 to 24
range.
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adoption of EVs. We approach this in two ways. First, we can use the estimates from tables 4

and 5 to back out the elasticity of demand of EFMP-eligible buyers as:

εP
QE

=
βPT

βQ PE. (15)

where βPT is the fraction of the subsidy captured by buyers and βQ is an estimate of the impact

of a $1,000 subsidy on demand for EVs.26 Alternatively, we can estimate the elasticity di-

rectly by regressing (inverse hyperbolic sine of) quantity on the percent premium or discount

at which EVs were sold in the zip-quarter. Formally, we estimate:

IHS(Qzt) = β %Premiumzt + νt + γz + εzt (16)

where %Premium is calculated as residual subsidy-inclusive price in zip z and time t normal-

ized by mean price of EVs in our data. Since the residual subsidy-inclusive price is plausibly a

function of the number of EVs sold, we once again will deploy the IV described in Section 4.1.

Table 6 presents elasticity estimates obtained from Equation 15 using the “upper-” and

“lower-”bound estimates from Table 5 for βQ and βPT estimates from Table 4. These place

the upper and lower bounds of the elasticity at -2.8 to -3.8 and -0.3 to -0.9, respectively. The

middle row of Table 6 (“Direct Estimate (IV)”) presents our preferred estimates of the demand

elasticity, which arise from estimating Equation 16. These all vary in a tight range between -2.1

to -2.2.

Collectively, these estimates are roughly in line with, but slightly higher in absolute magni-

tude than, recent estimates in the literature for the elasticity of early EV adopters.27 Our range

includes all estimates in the literature, with our preferred estimates (“Direct Estimate (IV)”) in

the upper half of the range in the literature. This suggests that low- and middle-income buyers

may be more price elastic than higher-income earlier adopters.

4.3 Price effect on non-participants

An implicit assumption in the analysis above is that the EFMP subsidies do not affect the price

paid by ineligible buyers through, for example, a shock to aggregate electric vehicle demand. If

the EFMP subsidy increases the prices paid by ineligible buyers,
dPjt(λzt)

dλzt
> 0, the pass-through

specification in equation (7) would tend to overestimate fraction of the subsidy captured by

26See appendix section A.3 for the derivation.
27Li et al. (2017) uses gasoline prices as an IV and estimates a demand elasticity of -1.3. Springel (2017) and Li (2017)

both use BLP IVs to retrieve estimates of -1.0 to -1.5 (Springel) and -2.7 (Li), respectively.
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program participants.

As noted in section 3.2, two features of our setting suggest the program is unlikely to affect

aggregate prices and significantly bias our pass-through estimates. The fraction of buyers who

receive the EFMP is small — in “treated” zips, two percent of vehicles on average receive an

EFMP subsidy. Thus, the impact of the program on the prices paid by non-participants is likely

to be modest. Second, our level of analysis is at the zip-quarter level despite the fact that zip

codes themselves are not isolated markets. Rather, these zip codes are part of large metro

areas across which people purchase vehicles. Vehicles commonly flow between metro areas in

response to local supply and demand conditions so as to arbitrage away local price premia.

Thus, we consider it unlikely that the small fraction of buyers who receive EFMP subsidies

have a meaningful impact on the prices paid by the vast majority of buyers who do not.

The details of the program allow us to test for spillover effects directly by examining the

effect of EFMP-induced demand on prices in zip codes outside the participating air quality

districts. We implement this by restricting the sample to sales outside the pilot regions and col-

lapsing the data to quarter-of-sample by make/model-year observations. We then regress the

average residual sales price on the share of vehicles of that make-model-model-year purchased

under the EFMP program in that quarter.

PAQMD=0
jt = αsjt + µj + νt + εjt (17)

where sjt is the fraction of vehicle j at time t purchased with an EFMP subsidy, µj are model

fixed effects and νt are time fixed effects. The test compares the prices for make-model-modelyears

popular amongst EFMP buyers to those unpopular amongst EFMP buyers. If the treatment in-

fluences the prices paid in non-participating regions, we would expect the average prices of

popular models to increase in non-participating regions after the start of the EFMP program

relative to the prices of unpopular models. The coefficient of interest is α, which will be positive

if the statewide share of the price of cars purchased in non-participating regions is positively

correlated with the fraction of those vehicles sold under the EFMP program.

We find that a small but statistically insignificant effect exists. The change in sjt from zero

to one represents a shift from zero percent to 100 percent of MMY vehicles being sold under

the EFMP program. Our estimate shows that this would, on average, increase the transaction

prices by $4,486. Adjusting for the share of EVs sold under EFMP (1.2 percent overall), this

implies an average increase of $53 for each such vehicle sold in non-participating AQMDs.

Adjusting instead by share of used EVs sold under EFMP (3.5 percent), it would imply an
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average increase of $157 per vehicle in non-participating AQMDs.

The existence of these effects implies that the “true” treatment effect on EV prices reported

in Table 4 may be slightly overstated, and one may wish to adjust these coefficients towards

zero by $50-$150 when interpreting these results. The qualitative and policy implications are

unaffected, however, as these spillover effects are one-to-two orders of magnitude smaller than

the average treatment effect on treated vehicles. Moreover, the presence of these market ad-

justments reflects the efficiency with which vehicle markets operate.

5 Discussion and Conclusion

In this paper, we exploit variation arising from rules governing the availability of EV subsidies

in California. Using a unique dataset of both transaction prices and subsidy levels, we estimate

the elasticity of demand amongst low- and middle-income households and the fraction of the

subsidy captured by consumers. It is difficult to estimate these statistics in a credible way when

examining many of the other EV rebate policies that have been available in the California and

the United States in recent years. Both the federal EV tax credit and the California Clean Vehi-

cle Rebate Project subsidies were (until recently) available to any EV buyer in their jurisdiction,

making it difficult to construct a credible control group. Yet, in our setting, the rules governing

the EFMP program in California are well suited to deploying a credible methodology for pro-

gram evaluation. When we do, we estimate a subsidy elasticity of EV demand of -2.1 and an

average subsidy pass-through rate in the vicinity of 80 percent.

The elasticity estimates speak to the responsiveness of low- and middle-income households

to EV incentives. Although mass electrification of the transportation sector will require adop-

tion by these households, until now, little was known about the demand elasticity for this

important group. The means-testing and geographic targeting of the EFMP allow a rare op-

portunity to study the adoption decisions of low- and middle-income buyers. One challenge

to generalizability is the EFMP requirement that recipients trade in an old car for scrap. This

lowers the true subsidy-eligible population under EFMP and may lead readers to consider

our main (ToT) elasticity estimates as lower than what would arise in the absence of such a

requirement.

One instructive comparison is to benchmark our elasticity estimate of -2.1 against implied

elasticities from the earlier literature on hybrid vehicle incentives that likely reflect the respon-

siveness of higher income, early adopters. Gallagher and Muehlegger (2011) and Chandra et

al. (2010) exploit the timing and coverage of U.S. state and Canadian province hybrid vehicle
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incentives, and estimate that a $1000 tax incentive was associated with 31 to 38 percent increase

in hybrid vehicle adoption. Even if the incentives are fully passed through to consumers, the

estimates imply responsiveness greater than our estimate for low- and middle- income house-

holds. In contrast, recent papers estimating the demand elasticity for early EV adopters (e.g.,

Li et al. (2017), Li (2017), and Springel (2017)) tend to estimate less elastic demand for early EV

adopters. Either way, historical evidence of the effect of subsidies obtained by early adopters

may prove a poor guide for policies aspiring to mass market adoption.

In addition, the pass-through results are informative for policy. Distributional objectives

are one of the primary motivations for the means-testing of the EFMP pilot (and other means-

tested environmental subsidies). We find that buyers capture the majority of the EFMP sub-

sidies, consistent with the funding being transferred to households below the income cutoffs.

Yet the program induces a reasonably strong demand response amongst the eligible popula-

tion, suggesting that some of the participating buyers would not have purchased an EV in

the absence of the subsidy. A back-of-the-envelope calculation yields a cost of public funds of

roughly 32 cents on the dollar associated with redistributing a dollar through the EFMP pro-

gram. As the EFMP pilot was means-tested, the program provides a closer analogue to many

recent subsidy programs, such as those offered as part of the Inflation Reduction Act of 2022,

that also rely on means-testing as a way to target subsidy dollars towards less-advantaged

households.

That said, two features of the program may temper the distributional benefits. First, the

scope of the program was very small. We find that the program had very little effect on the

price of vehicles for ineligible buyers. As noted by Busse et al. (2013), purchases of new vehicles

might easily adjust to demand induced by a larger program. But, for lower- and middle-income

households who are more likely to buy used vehicles, a larger program offering subsidies for

used vehicles might impact prices, reducing the effective fraction of the subsidy captured by

households. Second, within the group of low- and middle-income households, the benefits of

means-tested EV subsidies accrue to a select group of low- and middle-income households.

In particular, these subsidies are more likely to benefit households residing in single-family

dwellings, with easy access to dedicated charging infrastructure. As noted by Hsu and Fin-

german (2021), access to charging infrastructure is lower for households that live in multi-unit

dwellings and households living in Black and Hispanic majority-neighborhoods. As a conse-

quence, these households may be less likely to benefit from EV subsidies despite similar (or

lower) household incomes.
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California’s EV trajectory has been an exception in the U.S. To date, California buyers ac-

counted for roughly 40 percent of national EV registrations. This is due, at least in part, to

the robust growth of the market share of EVs in California, both before and after our study

period. At the end of 2017, roughly five percent of new vehicles registered in California were

plug-in or battery EVs.28 By 2022, EV market share in the state had risen to over fifteen percent.

The experience of low- and middle-income buyers in California over our study period is likely

still relevant to California buyers today, as higher market shares require purchases by lower-

income customers. Our estimates also provide a guide to present-day adoption in other parts

of the U.S. Excluding California, the national share of new EV registrations is just reaching lev-

els seen in California towards the end of our study period. Although vehicle preferences and

environmental attitudes may plausibly explain some the differences in adoption to date (see,

e.g., Archsmith et al. (2021) and Filippini and Wekhof (2021)) and both demand and supply of

EVs continues to evolve quickly, California’s experience and our estimates provide a window

into the adoption trajectory for the nation as a whole.

There are reasons to believe that widespread adoption will encounter challenges that are

not present in the EV market to date. In addition to a low stated willingness to pay for BEV

technology (Helveston et al. (2015)), consumers often fail to think about fuel prices in a system-

atic way (Turrentine and Kurani (2007), Bushnell et al. (2022)). EVs can take hours to charge,

and charging infrastructure will need to expand dramatically to meet the demand of a larger

EV fleet. Evidence from early adopters in California also raises questions about the extent to

which EVs are being used as substitutes for gasoline cars (Burlig et al. (2021)). It is not yet

known how well the electricity market will adapt to meeting a higher proportion of energy

demand from the transportation sector, nor how the carbon intensity of electricity production

will evolve to meet increasing vehicle charging demand.
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Figure 1: DAC Zip Codes, South Coast and San Joaquin Valley AQMDs

Note: The figure maps zip codes in California and the boundaries of the two air quality manage-
ment districts that were part of pilot program. Disadvantaged zip codes are shaded red. The area
of two participating AQMDs are shaded gray.
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Figure 2: Average Income and Max-CES Score
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Note: Left histogram presents the distribution of zip-level maximum CES scores for non-pilot
regions. Right histogram presents the distribution of zip-level maximum CES scores for the pilot
regions. The dashed vertical line corresponds to the disadvantaged community CES score cutoff
of 36.6.
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Figure 3: Trends in Prices and Quantities, Disadvantaged Communities in and out of Pilot Regions
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Note: Red and blue lines correspond to the unweighted average prices and log quantities in dis-
advantaged communities in and out of the pilot regions, respectively. Vertical line corresponds
to the start quarter for the EFMP program. Price graphs plot the mean residual prices for disad-
vantaged communities in an out of the pilot regions after conditioning on make-model-modelyear
fixed effects.
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Table 1: EFMP Incentive Schedule for BEVs and PHEVs

Income Base Subsidy Plus-Up Subsidy

< 225% FPL $4,500 $5,000
225-300% FPL $3,500 $4,000
300-400% FPL $2,500 $3,000

Table 2: Summary Statistics

Non-participating Participating AQMDs
AQMDs (South Coast/San Joaquin)

non-DAC DAC non-DAC DAC
EV Sales, Pre 60,789 26,993 31,524 39,424
EV Sales, Post 85,677 29,840 45,316 63,692
EV Sales Per Capita (per 000 pop), Pre 5.73 3.97 7.92 2.35
EV Sales Per Capita (per 000 pop), Post 8.08 4.39 11.38 3.79
Mean Sales Price ($), Pre 37,391.4 33,964.5 38,516.7 34,470.5
Mean Sales Price ($), Post 39,110.1 35,997.8 41,596.1 36,544.0

Count of EFMP EV trans., Pre 0 0 0 0
Count of EFMP EV trans., Post 0 0 29 1,330
EFMP Frac. of Sales, Pre 0 0 0 0
EFMP Frac. of Sales, Post 0 0 0.001 0.021
Mean Subsidy ($), Pre 0 0 0 0
Mean Subsidy ($), Post 0 0 2.01 191.20

Frac. zips in SCAQMD 0 0 0.860 0.684
Population (MMs) 10.61 6.798 3.983 16.81

The table reports statistics the transaction data (top panel) and subsidy data (middle panel)
for the three groups of untreated zip codes in the first three columns and for disadvantaged
zip codes in the participating AQMDs in the fourth column.
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Table 3: Demographic Summary Statistics

Population Weighted Sales Weighted
All CA Non-pilot DACs Pilot DACs EV Sales (2014-2018) EFMP Sales

Mean Income ($000) 93.1 85.9 76.2 128.0 75.9
(38.6) (29.3) (24.5) (52.1) (22.0)

Frac. HH < FPL (%) 35.0 38.0 42.8 23.9 42.0
(16.2) (13.6) (15.6) (13.3) (14.4)

Frac. HH < 225% FPL (%) 39.1 41.9 47.5 26.8 46.8
(17.0) (14.6) (15.6) (14.2) (14.6)

Frac. HH < 300% FPL (%) 50.8 54.2 60.5 35.8 60.2
(19.2) (16.4) (16.5) (16.9) (15.5)

Frac. HH < 400% FPL (%) 62.5 66.0 72.2 46.3 72.1
(19.2) (16.1) (15.6) (18.4) (14.3)

Adult HS Grad (%) 79.8 78.0 71.9 88.7 72.9
(14.3) (11.5) (14.5) (9.7) (13.2)

Fraction Hispanic (%) 37.7 38.6 51.9 23.1 48.6
(23.7) (20.6) (22.1) (17.5) (21.2)

Fraction African American (%) 5.8 8.5 7.0 4.2 6.2
(8.0) (8.5) (9.6) (6.0) (8.2)

Fraction Asian American (%) 13.2 14.8 12.0 18.1 16.8
(13.5) (13.8) (12.6) (15.8) (16.4)

Unemployment Rate (%) 11.2 12.4 12.5 8.9 12.7
(3.8) (3.8) (3.6) (2.9) (4.1)

Max CES score in Zip 42.8 44.1 55.9 35.5 56.1
(15.4) (6.3) (10.0) (13.6) (9.5)

The table reports the mean and standard deviation for zip code demographics, income and the Cal Enviro Score.
The averages for all of California are reported in column 1. Column 2 and 3 report summary statistics separately
for untreated and treated zip codes, respectively. Columns 4 and 5 report state-wide means weighted by electric
vehicles sales and EFMP subsidies rather than population, respectively.
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Table 4: Pass-Through and EFMP Incentives - Full Subsidy

(1) (2) (3) (4) (5) (6)
DinD Matched DinD Triple Diff DinD Matched DinD Triple Diff

% EFMP Transactions -8005.0∗∗∗ -6993.3∗∗∗ -7900.6∗∗∗
(1348.3) (1582.1) (1343.3)

(mean) avgsubsidy total -0.85∗∗∗ -0.73∗∗∗ -0.84∗∗∗
(0.15) (0.17) (0.15)

Observations 12495 16415 25139 12495 16415 25139
R-Squared 0.12 0.096 0.14 0.12 0.096 0.14

The dependent variable is average residual subsidy-inclusive price in a zip*quarter, after conditioning on
Make*Model*Model-year*Year of Sale fixed effects. Columns (1), (2), (4) and (5) include time and zip fixed
effects. Columns (3) and (6) include time*AQMD, time*DAC and zip fixed effects. Standard errors are clus-
tered by zip code.

Table 5: EV Sales and EFMP Incentives - Full Subsidy

(1) (2) (3) (4) (5) (6)
DinD Matched DinD Triple Diff DinD Matched DinD Triple Diff

Lower Bound 0.028∗∗∗ 0.016∗∗ 0.011
(0.0057) (0.0070) (0.0067)

Upper Bound 0.12∗∗∗ 0.13∗∗∗ 0.11∗∗∗
(0.011) (0.013) (0.010)

Observations 15801 19458 34477 15621 19278 34297
R-Squared 0.87 0.87 0.90 . . .
First-stage F-stat 170.2 120.7 168.9
Hansen Test p-value 0.64 0.33 0.89

The dependent variable is the inverse hyperbolic sine of sales in a zip*quarter. Control variables in all
specifications are zip and quarter-of-sample fixed effects. Standard errors are clustered by zip code.
Columns 1, 2 and 3 are OLS regressions for the unmatched Differences-in-Differences, the matched
Difference-in-Differences and the Triple-differenced specifications, respectively. Columns 4, 5 and 6
present IV estimates of columns 1 through 3 using our preferred instrument described in Section 4.1.
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Table 6: Demand Elasticity of Electric Vehicles - Full
Subsidy

(1) (2) (3)
DinD Matched DinD DDD

Upper Bound -3.10 -3.83 -2.83
(0.51) (0.94) (0.47)

Direct Estimate (IV) -2.10 -2.16 -2.14
(0.46) (0.57) (0.47)

Lower Bound -0.86 -0.57 -0.33
(0.22) (0.30) (0.22)

Table 6 presents elasticity estimates obtained from Equation 15
using the “upper-” and “lower-”bound estimates from Table 5
in the top and bottom rows, respectively. Standard errors for
these two rows are calculated via bootstrap (N=200 samples
drawn with replacement at the zip-code level). The middle
row of Table 6 (“Direct Estimate (IV)”) presents our preferred
estimates of the demand elasticity, which arise from estimating
Equation 16.
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A Appendix

A.1 Supplementary Figures and Tables

Figure A1: EFMP Eligibility Flowchart

EFMP/Plus-Up Flow Chart

June 22, 2017California Air Resources Board
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Source: https://www.arb.ca.gov/board/books/2017/062217/17-6-1pres.pdf
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Figure A2: CalEnviroScreen Components

Figure A3: DACs and AQMD borders, Major Metro Areas

(a) Los Angeles (b) Sacramento

(c) San Francisco (d) San Jose
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Figure A4: Population and Subsidies by Max-CES Score
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Note: The graph plots the cumulative distributions of population, population below 400% of FPL,
and value of EFMP subsidies within the Pilot Region AQMDs. The dashed vertical line corre-
sponds to the disadvantaged community CES score cutoff of 36.6.

Figure A5: Trends in Prices and Quantities, Disadvantaged Communities in and out of Pilot Re-
gions for samples matched on pre-trends
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Note: Red and blue lines correspond to the unweighted average prices and log quantities in dis-
advantaged communities in and out of the pilot regions, respectively. Vertical line corresponds
to the start quarter for the EFMP program. Price graphs plot the mean residual prices for disad-
vantaged communities in an out of the pilot regions after conditioning on make-model-modelyear
fixed effects.
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Table A1: Pass-Through and EFMP Incentives

(1) (2) (3) (4) (5) (6)
DinD Matched DinD Triple Diff DinD Matched DinD Triple Diff

% EFMP Transactions -9602.6∗∗∗ -8510.8∗∗∗ -9701.7∗∗∗
(1162.3) (1208.5) (1165.7)

(mean) avgsubsidy total -1.04∗∗∗ -0.89∗∗∗ -1.05∗∗∗
(0.14) (0.16) (0.14)

Observations 12468 16415 25112 12468 16415 25112
R-Squared . . . . . .
First-stage F-stat 95.9 69.7 95.5 182.5 244.6 181.1
Hansen Test p-value 0.78 0.15 0.76 0.64 0.23 0.62

Dependent variable is average residual subsidy-inclusive price in a zip*quarter, after conditioning on
Make*Model*Model-year*Year of Sale fixed effects. Columns (1), (2), (4) and (5) include time and zip fixed
effects. Columns (3) and (6) include time*AQMD, time*DAC and zip fixed effects. All specifications are IV
specifications, using the instruments described in section 4.1. Standard errors are clustered by zip code.
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A.2 Instrumental Variables

Our primary variables, EFMP-share of total transactions and the average subsidy across all

transactions, are normalized by the total quantity of electric vehicles in a zip*quarter. This

creates a structural endogeneity between the error term and the dependent variable, most clear

in regressions where the dependent variable is log of total transactions. When constructing

an instrument, the relevant exclusion restriction is that the error term is uncorrelated with the

instrument. A necessary condition for the exclusion restriction to hold is that contemporaneous

quantities in a zip code does not enter the construction of the instrument, either directly or

indirectly.

Formally, denoting the number of post-period quarters as T, the quarter in which the EFMP

program becomes active as t∗ and the average number of transactions in zip z in quarter t as

Qzt = ∑i 1(zip = z,time = t), we construct our preferred instrument for EFMP-share as:

Pre f erredIVzt =
∑i 1(Subsidyizt > 0, zip = z, time = t)

∑r 6=t,r≥t∗ Qzr
T−1

∑x 6=z Qxt
∑r≥t∗ ∑x 6=z Qxr/T−1

(18)

The numerator of the instrument is identical to the numerator of EFMP-share. On the other

hand, the first term in the denominator is the average number of total transactions in zip z in

the post period, leaving out the current period. This captures largely cross-sectional variation

across zip codes reflecting how many EVs are typically purchased in a location. The second

term is the ratio of contemporaneous sales in all other zip codes in the district, to the average

sales in all quarters except this one. This largely captures time-series variation with regards to

EV sales in the air district. Note that this instrument excludes contemporaneous quantities in

a zip code at time t. Absent autocorrelation or spatial correlation of preferences, which would

lead contemporaneous quantities in a zip code to be either correlated with the former or latter,

respectively.

We also construct three alternative instruments. The first two relax the assumptions of

spatial correlation and autocorrelation of preferences, respectively. Formally,

AlternativeIV1zt =
∑i 1(Subsidyizt > 0, zip = z, time = t)

∑r 6=t,r≥t∗ Qzr
T−1

(19)

AlternativeIV2zt =
∑i 1(Subsidyizt > 0, zip = z, time = t)

∑x 6=z Qxt
∑r≥t∗ ∑x 6=z Qxr/T−1

(20)

Alternative IV 1 is identical to our preferred instrument, but excludes the time-series variation

provided by average EV sales of other zip in district. If we worry that spatial correlation of

sales invalidates our preferred instrument, alternative IV 1 does not rely on contemporaneous
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sales at all. In a similar fashion, alternative IV 2 excludes the cross-sectional variation provided

by the average sales in the zip leaving out contemporaneous sales, allowing for autocorrelation

in sales.

Finally, the third alternative instrument is a traditional shift-share instrument, interacting

cross-sectional variation in the fraction of households in the zip code below 225% of the federal

poverty line with time-series variation in either state-wide EFMP share or state-wide mean

EFMP subsidy.

A.3 Backing out an elasticity estimate

The coefficients estimated from the quantity regressions reflect the response of the log of all

sales in a zip-quarter to the EFMP program. However, from a policy perspective, we may be

interested in two expressions of interest, the percentage change in EV sales from offering a

$1000 subsidy and the elasticity of demand, both specifically in relation to the population of

EFMP-eligible individuals.

Letting η denote the fraction of EFMP-eligible buyers in a zip-quarter, N the number of

buyers, P0 the “buy price” for non-participants and P0− βS as the “buy price” for participants,

where S is the total value of the subsidy and β is the fraction of the subsidy captured by buyers,

we can express the log of quantity as a function of the quantity for a representative eligible

consumer, QE and an ineligible consumer, QI as follows:

log(Qzt) = log(NηQE(P0 − βS) + N(1− η)QI(P0)) (21)

Our specification regresses the log of quantity against the average subsidy in a quarter-zip

(λS). Consequently, the estimated coefficient, φ, is an estimate of dlogQ
dλS . Noting that dS

dλS = 1/λ,

taking the derivative of log(Qzt) with respect to S gives:

λφ =
−ηβN dQE

dP
NηQE + (1− η)QI

. (22)

Noting that λ is the fraction of transactions that were part of the EFMP program, ηQE
ηQE+(1−η)QI

,

we can rewrite (22) as the response of the log sales of the EFMP-eligible consumers to a unit

change in subsidy S:
dlog(NηQE)

dS
=

Nη dQE
dP β

NηQE(P0 − βS)
= φ. (23)

Rearranging the latter quality, we can characterize the elasticity of demand of EFMP-eligible

buyers as:

εP
QE

=
φ

β
PE. (24)
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